
 

 
NAVAL 

POSTGRADUATE 

SCHOOL 
 

MONTEREY, CALIFORNIA 
 

 
 

THESIS 
 
 

Approved for public release; distribution is unlimited 

INCREASING THE ENDURANCE AND PAYLOAD 
CAPACITY OF UNMANNED AERIAL VEHICLES WITH 

THIN-FILM PHOTOVOLTAICS 
 

by 
 

Seamus B. Carey 
 

June 2014 
 
Thesis Advisor:  Sherif Michael 
Second Reader: Alejandro Hernandez 



THIS PAGE INTENTIONALLY LEFT BLANK 



 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, 
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send 
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to 
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503. 

1. AGENCY USE ONLY (Leave blank) 
 

2. REPORT DATE   
June 2014 

3. REPORT TYPE AND DATES COVERED 
Master’s Thesis 

4. TITLE AND SUBTITLE   
INCREASING THE ENDURANCE AND PAYLOAD CAPACITY OF 
UNMANNED AERIAL VEHICLES WITH THIN-FILM PHOTOVOLTAICS 

5. FUNDING NUMBERS 

6. AUTHOR(S)  Seamus B. Carey 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Naval Postgraduate School 
Monterey, CA  93943-5000 

8. PERFORMING ORGANIZATION 
REPORT NUMBER     

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
N/A 

10. SPONSORING/MONITORING 
    AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES  The views expressed in this thesis are those of the author and do not reflect the official policy 
or position of the Department of Defense or the U.S. Government.  IRB Protocol number ____N/A____.  

12a. DISTRIBUTION / AVAILABILITY STATEMENT   
Approved for public release; distribution is unlimited 

12b. DISTRIBUTION CODE 
 

13. ABSTRACT (maximum 200 words)  
Prior research has shown that the endurance of small unmanned aerial vehicles (UAV) can be significantly extended 
using thin film photovoltaic cells. The different power requirements of the RQ-11B Raven variants are explored in 
this thesis, and it is demonstrated that a CuInGaS2 (CIGS) solar array adhered to the wing of an RQ-11B not only 
extends the flight time but also expands the payload capacity of the platform.   

Power requirements and existing endurance of the digital variant of the RQ-11B were measured to establish a baseline 
of the platform’s performance and validate previous research. A modular wing with an integrated CIGS array was 
then designed and constructed to be incorporated with the existing power circuitry of the platform. The baseline tests 
were repeated to determine the power generated by the array and supplied to the digital RQ-11B. It was shown that a 
solar integrated RQ-11B has a larger payload capacity and extended endurance, while still maintaining the modular 
and expeditionary nature of the existing platform. The concept of this research may be applied to all unmanned aerial 
platforms in order to expand their power generation to operate simultaneous or demanding payloads without stressing 
the existing power supply.   

 

 

 
14. SUBJECT TERMS Raven, RQ-11B, UAV, Solar Power, CIGS, Thin Film Photovoltaic 15. NUMBER OF 

PAGES  
87 

16. PRICE CODE 

17. SECURITY 
CLASSIFICATION OF 
REPORT 

Unclassified 

18. SECURITY 
CLASSIFICATION OF THIS 
PAGE 

Unclassified 

19. SECURITY 
CLASSIFICATION OF 
ABSTRACT 

Unclassified 

20. LIMITATION OF 
ABSTRACT 
 

UU 

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)  
 Prescribed by ANSI Std. 239-18 



 ii

THIS PAGE INTENTIONALLY LEFT BLANK 



 iii

Approved for public release; distribution is unlimited 
 
 

INCREASING THE ENDURANCE AND PAYLOAD CAPACITY OF 
UNMANNED AERIAL VEHICLES WITH THIN-FILM PHOTOVOLTAICS 

 
 

Seamus B. Carey 
Captain, United States Marine Corps 

B.S., United States Naval Academy, 2008 
 

Submitted in partial fulfillment of the 
requirements for the degree of 

 
 

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING 
 

from the 
 
 

NAVAL POSTGRADUATE SCHOOL 
June 2014 

 
 
 

Author:  Seamus B. Carey  
 
 
 

Approved by:  Dr. Sherif Michael 
Thesis Advisor 

 
 
 
Dr. Alejandro S. Hernandez 
Second Reader 
 
 
 
Dr. Clark Robertson 
Chair, Department of Electrical Engineering 
Graduate School of Engineering and Applied Science 



 iv

THIS PAGE INTENTIONALLY LEFT BLANK 

  



 v

ABSTRACT 

Prior research has shown that the endurance of small unmanned aerial vehicles (UAV) 

can be significantly extended using thin film photovoltaic cells. The different power 

requirements of the RQ-11B Raven variants are explored in this thesis, and it is 

demonstrated that a CuInGaS2 (CIGS) solar array adhered to the wing of an RQ-11B not 

only extends the flight time but also expands the payload capacity of the platform.   

Power requirements and existing endurance of the digital variant of the RQ-11B 

were measured to establish a baseline of the platform’s performance and validate 

previous research. A modular wing with an integrated CIGS array was then designed and 

constructed to be incorporated with the existing power circuitry of the platform. The 

baseline tests were repeated to determine the power generated by the array and supplied 

to the digital RQ-11B. It was shown that a solar integrated RQ-11B has a larger payload 

capacity and extended endurance, while still maintaining the modular and expeditionary 

nature of the existing platform. The concept of this research may be applied to all 

unmanned aerial platforms in order to expand their power generation to operate 

simultaneous or demanding payloads without stressing the existing power supply.  
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EXECUTIVE SUMMARY 

The recent budgetary restrictions for the Department of Defense (DOD) underscore the 

relative cost effectiveness of unmanned aerial vehicles (UAV), while the military push 

toward alternative sources of energy demands that those systems are efficient. As a result, 

extending the endurance and increasing the payload capacity of the existing UAV 

inventory becomes a priority to enhance the combat effectiveness of the warfighter and 

reduce operational costs for the DOD. Currently, military UAVs are limited by the size of 

their payload and endurance. The present endurance for a UAV depends on the 

characteristics of the individual platform; however, the small, electric platforms such as 

the RQ-11B Raven are employed by small units and are limited to an operating time of 

60 to 90 minutes [1]. While this platform is an asset to the warfighter, its capabilities are 

restricted by the dismal endurance and limited payload. Longer persistence and a larger 

payload would reduce the small unit’s reliance on a limited number of surveillance assets. 

Fortunately, being driven by a brushless direct-current (DC) electric motor, the RQ-11B 

platform is a prime candidate for renewable sources of energy. As such, the incorporation 

of photovoltaic (PV) technology would extend the battery life of the Raven system and 

greatly increase its operating endurance and payload capacity.   

Previous research has demonstrated that it is a proven and viable endeavor to 

increase the endurance of small Group 1 UAVs through the application of thin film 

photovoltaic (TFPV) cells [2], [3]. The objective of this thesis is to investigate whether 

high efficiency CuInGaSe2 (CIGS) cells, when applied to an RQ-11B Raven, will power 

the aircraft from dawn to dusk and simultaneously increase the payload capacity. To 

accomplish this objective, the multiple variants of the Raven UAV were explored, and 

the power requirements of the current payloads were determined. With this baseline, a 

modular array of CIGS was designed for the RQ-11B that maintains the modular and 

expeditionary characteristics of the existing system. The modular array required 

additional power circuitry to be integrated with the Raven. A maximum power point 

tracker (MPPT), in series with the array, controls the output by adjusting its relative 

impedance to match the load and provide the maximum power to the lithium ion battery 



 xvi

of the Raven UAV. Before the battery can receive the input power from the array, it is 

boosted to the necessary voltage by a DC-DC converter. In this research, the MPPT and 

boost controller were incorporated on the same circuit board. Finally, a battery balancer 

ensures that the individual cells of the lithium ion battery are charged equally and safely.  

Prior to constructing the array and power circuitry, a baseline for the system was 

established. It was determined that the current, digital version of the RQ-11B Digital 

Data Link (DDL) required much more current for operation than previous variants of the 

UAV. In Figure 1, the current draw of the RQ-11B, DDL is compared to previous 

research with the analog variant of the Raven. The increase in current depicted in Figure 

1 is indicative of a higher power requirement for the digital variant of the UAV.  This 

result voided the predictions and calculations of previous research for the potential of 

TFPVs to completely power a Raven system with solar energy. As a result, further testing 

was required to determine the actual endurance of the digital platform and the increase in 

endurance made possible by a CIGS array. 

 
Figure 1.   Average current draw of the Raven B, DDL variant at multiple throttle settings 

compared to the Raven B data (from [2]). 
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It was determined through multiple iterations of ground tests that the average 

endurance of the RQ-11B, DDL was approximately 30 minutes. This measurement was 

the time the UAV battery lasted before reaching a low voltage warning, indicating 

approximately 15 minutes of battery life remaining.  By comparison, research in [3] with 

the analog version of the Raven measured an average baseline endurance of 126 minutes. 

This difference was consistent with the higher power requirements indicated by the 

current draw tests.  

Once the endurance of the RQ-11B, DDL was established, the payloads were 

examined to determine their operating requirements. Through investigative analysis and 

multiple measurements, it was deduced that the various payloads of the Raven are 

powered by a maximum of 16.0 V and 187.0 mA. Assuming that the measured values 

were conservative with respect to the allowable energy requirements, we assumed that 

6.0 W would be necessary for an array to power a single payload.  

With a baseline for endurance and payload capacity established, the CIGS array 

was constructed and evaluated to determine its performance. With a surface area of 1828 

cm2 covered by CIGS, the array produced anywhere from 10.0 to 16.0 W depending on 

the solar irradiance and angle-of-incident light. With the MPPT integrated with the power 

circuitry, the array’s output was held relatively constant at 14.0 W during optimal 

conditions. Once constructed and incorporated with the Raven, the array was evaluated 

with the same test procedures as baseline testing to determine the benefits provided by 

the CIGS. On average, the solar array enabled the AV to operate for nearly 45 minutes 

before receiving the low battery voltage warning. This endurance corresponds to a 

48.87% improvement, which is shown in Figure 2. It was concluded that the 

improvements made to the Raven B, DDL variant drastically diminished the endurance 

benefits of incorporating a TFPV array with the power circuitry when compared to 

research in [3] and [4].   
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Figure 2.  The results of a solar integrated Raven B, DDL endurance test compared to 
 the baseline endurance. 

While the endurance benefits were hampered by the improvements to the digital 

Raven platform, the power produced by the array may still be harnessed and applied 

elsewhere in the system.  As previously mentioned, payload testing concluded that 

approximately 6.0 W are required to operate a single payload. The 14.0 W generated by 

low efficiency CIGS are more than sufficient to expand the payload capacity of the 

Raven.  

Ultimately, with the current efficiencies of TFPVs and the increased power 

requirements of the Raven RQ-11B, DDL variant in mind, the concept of a solar powered 
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platform. Additionally, the solar wing would provide a much needed power source in 

austere and isolated environments. 

The following recommendations for additional research are necessary to enhance 

and improve upon the findings of this research: 

 Verify the current consumption of the Raven RQ-11B, DDL across the 
DOD inventory. 

 Measure the current of the air vehicle in Autonomous Flight with a data 
logger. 

 Conduct similar research with gas powered UAVs.  

 Refine the wing interface design for the modular array. 
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I. INTRODUCTION 

A. BACKGROUND 

Since 2001, the Department of Defense (DOD) utilization and acquisition of 

military unmanned aerial vehicles (UAV) has expanded exponentially [1]. The wars in 

Iraq and Afghanistan proved the usefulness and effectiveness of such systems in combat 

scenarios and provide a glimpse into the military and homeland security operations of the 

future. Despite the fiscal restrictions of the past few years, UAV production has 

resiliently increased, and the military spending on the acquisition of those systems is set 

to rise through fiscal year 2015 [1]. The tightening of the fiscal belt in Congress 

underscores the relative cost effectiveness of unmanned systems, while the military push 

toward alternative sources of energy demands that those systems are efficient. In 

particular, the commandant of the Marine Corps directs that the “the current and future 

operating environment requires an expeditionary mindset geared toward increased 

efficiency and reduced consumption, which will make our forces lighter and faster” [2]. 

As a result, extending the endurance and increasing the payload of tactical level UAVs 

becomes a priority to enhance the combat effectiveness of the warfighter and reduce 

operational costs for the DOD.  

The asymmetrical style of warfare that experienced resurgence by the Global War 

on Terrorism has driven the desire to expand the UAV fleet. Currently, UAVs are 

organized into five different categories, Group 1 through Group 5. They are categorized 

according to the size, operating altitude, and airspeed of the individual platform. In Table 

1, the five groups of UAVs are depicted with brief explanations of their operating 

parameters. In general, the UAVs in Groups 2 through Group 5 are driven by gas 

powered motors while Group 1 aircraft are small, electrically powered systems.  
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Table 1.   The Department of Defense unmanned aircraft system organization 
(from [3]). 

 

UAVs are used for all missions, from intelligence, surveillance, and 

reconnaissance (ISR) to strike capable operations. These platforms provide an over-the-

horizon or over-the-hill capability that is paramount to the warfighter. On the tactical 

level, the ability to organically establish reconnaissance and perspective of the battlefield 

is an integral advantage during wartime. It allows the commander to build a more 

accurate picture of the battle space without exposing his or her troops to enemy fire. 

During Operation Enduring Freedom, the use of UAVs was a proven combat multiplier, 

enabling troops to gather intelligence and root out the enemy while reducing the cost of 

human life [4]. In addition to the benefit provided to small units, UAVs can affect the 

theater and strategic level of warfare as well. Group 5 UAVs such as the MQ-9 Reaper 

are capable of precision strikes against enemy combatants and facilities across the globe. 

These actions act as anti-access and area denial systems [1]. In the future, the DOD looks 

to expand the use of unmanned systems and incorporate them into our existing defense 

infrastructure [1]. Such actions will serve to enhance the prevailing warfighting functions 

of the nation’s military and enable them to respond to evolving technological threats.  

As technology and the style of warfare evolve, the DOD anticipates that UAVs 

will enable a more rapid and effective response to future threats [1]. Expanding the 

abilities of the existing platforms then becomes an inherent requirement to meet the 

demands of that evolving threat. Currently, military UAVs are limited by the size of their 

payload and endurance. The current endurance for a UAV depends on the different 

payloads that it carries but can range from just over an hour for a Group 1 asset to 32-plus 

hours for the RQ4A/B Global Hawk [5]. While Group 1 platforms are an asset to the 
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warfighter, their dismal endurance and limited payload is a critical vulnerability. 

Fortunately, being driven by electric motors, those platforms are prime candidates for 

renewable sources of energy. As such, the incorporation of photovoltaic (PV) technology 

would extend the battery life of Group 1 aircraft and greatly increase the operating 

endurance and payload of the current systems.   

B. RELATED RESEARCH 

Previous theses at the Naval Postgraduate School have focused on the application 

of affordable thin film photovoltaic (TFPV) cells to a variety of aircraft platforms to 

demonstrate and model the extended endurance provided by this method [6], [7]. In this 

research, we expand upon the work started by William R. Hurd in 2009 with a model 

airplane [7] and most recently continued by Christopher R. Gromadski with an RQ-11 

Raven in 2012 [8]. For a detailed background of solar flight and the different platforms in 

the UAV inventory, the aforementioned theses are available for further reference. In 

addition, the Air Force Research Laboratory demonstrated a 60% increase in flight 

endurance by utilizing thin-film, triple junction GaAs cells from MicroLink Devices in 

2012 [9].  

C. OBJECTIVE 

It is a proven and worthwhile endeavor to increase the endurance of small Group 

1 UAVs through the application of thin film photovoltaic (TFPV) cells [6]. The objective 

of this thesis is to investigate whether the highest efficiency CuInGaSe2 (CIGS) cells, 

when applied to an RQ-11 Raven UAV, will power the aircraft from dawn to dusk and 

simultaneously increase the payload capacity. The possibility of applying TFPV cells to 

gas-powered UAVs in order to demonstrate the same result is also explored.  

With recent advances in the efficiency and availability of CIGS cells, the 

affordability of previously unattainable assets is now logical with respect to the cost of a 

Group 1 UAV. It is important to this research that the solar cells applied to the aerial 

platform do not make the entire system cost prohibitive for the DOD. A cost benefit 

analysis demonstrates that higher efficiency TFPV cells are available but do not provide 
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the affordable and efficient systems sought by the current Unmanned Integrated Systems 

Roadmap [1].  

D. APPROACH 

In order to achieve the objectives, an actual RQ-11 Raven is ground tested in 

order to determine the power requirements for various throttle settings and individual 

payloads. Then, a modular solar array is designed and adhered to the wings of the Raven. 

Finally, the array and solar integrated UAV is tested in order to validate our predictions.  

Information pertaining to the Raven’s system characteristics, mission, and critical 

limitations is given in Chapter II. The photoelectric effect and the fundamentals of TFPV 

operation are reviewed in Chapter III. Next, solar cell parameters are defined and the 

design for the solar panel is presented in Chapter IV. Testing and analysis of the Raven 

system and solar panel are provided in Chapter V. Finally, conclusions regarding the 

potential of a solar cell integrated UAV are discussed in Chapter VI.  
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II. CURRENT ACQUISITION 

A. RQ-11 RAVEN 

As of mid-2013, there were more than 10,000 unmanned aerial systems across all 

the services, and the DOD has budgeted over 3.7 billion dollars for those systems in 2014 

[1].  The vast acquisition of UAV platforms, especially Group 1 assets, is a testament to 

their battlefield utility and the drive for widespread application.   

In this research we focus on the RQ-11 Raven, which is designed by 

AeroVironment and makes up the highest inventory of all DOD UAV platforms. It is a 

small, lightweight asset that is man portable and can be rapidly deployed for line-of-sight 

operations in day or nighttime environments with a range of 5.0 to 10.0 km. The system 

is easily hand-launched as shown in Figure 1. Weighing roughly 4.5 lbs with a 55.0 inch 

wingspan and a modular design, the aircraft and associated ground control equipment  

can be easily stowed and transported for expeditionary operations.  The system is 

typically employed by a two- or three-man team [10].  However, the system is powered 

by a lithium ion (Li-ion) battery with an endurance limited to an advertised 60 to  

90 minutes [11].  

 

Figure 1.  An RQ-11 Raven launch during Operation Iraqi Freedom (from [12]). 
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1. Mission 

All Group 1 UAVs execute similar mission sets and are designed for small unit 

application.  Their ability to be hand-launched and recovered in confined areas enables 

their use in isolated and austere operating environments, which precludes the reliance 

upon outside sources for battlefield intelligence and observation.  Currently, most Group 

1 UAVs are capable of autonomous operations with a constant Digital Data Link (DDL) 

to provide real-time video and data to the user. These capabilities enable them to conduct 

a variety of intelligence-driven missions that allow for remote reconnaissance and 

surveillance, force protection, target acquisition, and battle damage assessment [1]. 

2. System Configuration 

Currently, the Raven system is composed of three Air Vehicles (AV), two Ground 

Control Systems (GCS), two payloads, a Reconnaissance, Surveillance, and Target 

Acquisition Kit, an Initial Spares Package, a Field Repair Kit, and a charger with multiple 

batteries for the AV and the GCS. As previously stated, the Raven system is designed to 

be completely modular in order to facilitate its use in austere environments.  A 

breakdown of the AV components is presented in Figure 2.  The wing is easily removed 

from the airframe and can be disassembled into three pieces.  The tail boom, horizontal 

stabilizer, battery, and payload are all removed from the airframe as well.  All the 

components of the AV fit within the man portable soft pack [11].  The GCS is also 

broken down and carried in a separate soft pack. The elements of the GCS can be found 

in [11]. 
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Figure 2.  A breakdown of the RQ-11 air vehicle (from [11]). 
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3. Performance Characteristics and Limitations 

The Raven utilizes a brushless direct current electric motor and is powered by a 

rechargeable 25.2 V Li-ion polymer battery with an advertised 98.0 watt-hours.  The 

performance characteristics of the platform are summarized from the operator’s manual 

in Table 2.  

Table 2.   The RQ-11 Raven operating parameters (after [11]).  

 
 

4. Payloads 

The Raven system has experienced a series of payloads that have incrementally 

improved since its introduction to the fleet.  Currently, AeroVironment advertises three 

different payloads to the consumer. These payloads are an electro-optical (EO) camera, 

an infrared (IR) camera with an IR illuminator, and a dual EO and IR camera mounted on 

a stabilized gimbaled payload [10].   The availability of a dual EO and IR payload is a 

vast improvement to the original system because it allows the operator to toggle between 

the two available payloads.  However, a solar integrated Raven may be capable of 

generating enough power to run both payloads simultaneously, further enhancing the 

operator’s capabilities.  

Parameter Characteristic
Wingspan 55 in.

Length 36 in.

Structure modular, Kevlar Composite

Weight (W/Payload) 4.4 lb

Payload weight 6.5 oz

Normal Operating Altitude 150‐1000 ft above ground level

Cruise Speed 26kts

Range 10km line of sight

Motor Direct Drive electric

AV Batteries Li‐Ion (rechargeable)

Flight Duration 60‐90 min

Launch Hand Launch

Landing Deep stall Autoland

Navigation Global Positioning System and electronic compass

Flight Control Manual or Autonomous

Windspeed  max 20kts

Rain max 0.25in/hour
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5. Variants 

The Raven that was used for research in [6] and [8] was an older model of the 

current platform. The initial model was produced up until 2006 and is known as the RQ-

11A, or Raven A because of the analog communication system of the platform [13].  

After 2006, the Raven B variant was released to the DOD with enhancements to the 

optics and guidance and control capabilities of the AV [13].  Shortly thereafter, the Raven 

B, DDL variant was announced, which employs all digital links to utilize bandwidth 

more efficiently.  The DDL variant enables improvements to the cameras, allows for  

data encryption, and permits more AVs to operate within a set geographical  

area. Furthermore, the DDL version received an upgraded motor and speed controller  

“to provide more thrust and better power management” [14]. The difference in endurance 

between the variants is unclear and is part of the investigation of this research.  

6. Comparable DOD Platforms 

Other Group 1 UAVs that are candidates for solar integration are the RQ-12 Wasp 

and the RQ-20 Puma.  These two platforms make up the majority of the existing DOD 

UAV inventory and are presented as a point of comparison.  AeroVironment’s RQ-12 

Wasp, illustrated in Figure 3, is smaller in size and inventory compared to the Raven.  It 

is a hand-launched system that one person can carry.  While having similar operating 

characteristics and using the same ground control station as the Raven, the Wasp has only 

a 3.3-ft wingspan and weighs just 2.85 lbs. The endurance of the RQ-12 Wasp is limited 

to 50 minutes and a range of only 5.0 km [15].   

 

Figure 3.  An example of the Wasp UAV with a gimbaled payload (from [15]). 
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AeroVironment’s dominance of the Group 1 UAV market continues with the RQ-

20 Puma.  Depicted in Figure 4, the Puma is significantly larger than the Raven and the 

Wasp, with a wingspan of 9.2 ft and a length of 4.6 ft.  Still a man-portable platform, 

 it weighs 13.5 lbs and boasts an endurance of approximately 3.5 hours over a range of 

15.0 km. The Puma UAV is designed for both land and maritime operations and is 

launched by hand or an optional rail-launch system [16].    

 

Figure 4.  An example of the Puma UAV (from [16]). 

7. Critical Limitations 

While the advertised endurance of the Raven is 60 to 90 minutes, that endurance 

is subject to change depending on the operating conditions.  In higher temperatures, the 

operator’s manual warns that the flight time will be reduced [11].  Additionally, the 

battery charger is only capable of indicating the charge of the battery to within 10% of 

the actual voltage level.  Therefore, while the charger may indicate that a battery is fully 

charged, it may not be. Additionally, if two drained batteries are charged simultaneously, 

the batteries will require a much longer time to charge in order to properly balance [11].   

Furthermore, the burden of employing Group 1 UAVs is the extra gear that the 

warfighter is required to carry.  The limited endurance and challenges of attempting to 

charge batteries in a battlefield environment encourages troops to carry more batteries 

into combat for redundancy.  According to a report by the Naval Research Advisory 

Committee, in 2006 the average Marine carried a load of 97 to 135 pounds to combat.  

For such a staggering load, every ounce saved makes a significant difference [17].  With 

these systems, those additional batteries must be carried to ensure that a constant rotation 
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of aircraft can be launched and recovered to provide continuous coverage.  The current 

endurance of the Raven is insufficient for small units to achieve continuous observation 

of an objective without cycling multiple aircraft and carrying additional batteries into 

combat.  It is a critical shortfall of these platforms that must be addressed. 

Similarly, the warfighter constantly seeks to expand the capabilities of current 

technology.  The payloads of existing platforms are frequently expanded, but these 

improvements increase the power required to run them.  So to meet these increases in 

power consumption, the payload capacity must expand to support the warfighter’s 

growing needs. Existing systems must continue to evolve for the future operational 

requirements that are on the horizon. While the Group 1 UAVs fill an operational 

necessity that exists today, their capabilities must develop and improve to match the 

future threats to our national security.  The Unmanned Systems Integrated Roadmap for 

2013 charges that our current programs of record must “achieve the levels of 

effectiveness, efficiency, [and] affordability” to meet the demands of the next generation 

[1].  Alongside that imperative, the DOD budget is experiencing a reduction in the 

funding that enabled the acquisition of our current UAV assets. Ultimately, the military 

must continue to expand the technological capabilities of our current systems in a cost-

effective manner [1].  A low cost, solar integrated UAV would increase both the 

endurance and payload capacity of our existing systems to meet these goals.  

B. POTENTIAL COMMERCIAL AND OPTIMAL DESIGNS 

1. Commercial Off-the-Shelf Technology 

Perhaps a different design would provide the optimum candidate for a solar- 

powered UAV.  An aircraft with more lateral surface area would benefit the most because 

it would harvest the most power from TFPVs. An array of UAVs outside of the DOD 

inventory match this requirement.  In particular, some designs that sought to improve 

aircraft stability proved useful for solar cell integration.  The Tango UAV produced by 

Draganfly Innovations in Canada has a tandem wing configuration that essentially 

doubles the useable surface area of the aircraft [18].  Advertised to improve stability and 

flight characteristics at low speeds, the Tango is shown in Figure 5.  
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Figure 5.  The design of the DraganFly Tango UAV (from [18]). 

Similarly, Dara Aviation, based in Washington state, has a patented Joined Bi-

Diamond Wing design for its D-1 models that reduces drag and increases lift.  Like the 

Tango, the useable surface area is vastly increased by the unique design, which is shown 

in Figure 6.  Additionally, the fuselage of this aircraft is also capable of solar integration 

because of its relatively flat and wide design.  

 

Figure 6.  The Dara Aviation lightweight UAV (from [19]). 

These two aircraft designs are just two of the many available options in the 

commercial sector that might make for a better option for TFPV integration.  

Understandably, the acquisition process is slow and costly; therefore, it may not be a 

viable option for the DOD to invest in a whole new platform.  
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2. Modification of Existing Airframe 

Previous thesis work by Javier Coba and Christopher Gromadski investigated the 

possibility of altering the airframe of the existing Raven in order to maximize the effect 

of solar cell integration [6], [8].  For their research, the expanded wing pictured in Figure 

7 was designed and integrated with solar cells.  A 70% increase in endurance was 

achieved with this method; however, flight tests were unable to be conducted.  

Nevertheless, the concept of altering the airframe begs the question of what other 

modifications would benefit a solar application.  Potentially, the stabilizer could also be 

modified and used to contribute to the solar array.  Additionally, the design of the tail 

boom could be altered to provide a flat surface that may also be utilized.  In summary, a 

variety of alterations to the existing airframe would maximize the available surface area 

and contribute to the power generation of the solar array.  However, maintaining the 

modularity of the system is critical to its introduction to the fleet.  By creating a solid 

wing as in Figure 7, the concept was proven but more work must be done to show it does 

not preclude the expeditionary nature of the Raven system.  

 

Figure 7.  Comparison of the expanded Raven wing designed by [6]  
and the standard wing.  

  



 14

THIS PAGE INTENTIONALLY LEFT BLANK 



 15

III. CIGS PHOTOVOLTAIC CELLS 

A. INTRODUCTION 

More commonly known as solar cells, PV cells are designed and constructed with 

a variety of different materials and manufacturing methods.  These subtle differences 

affect the conversion of solar energy into electricity and their ideal operating 

environment.  However, the basis of all solar cells is the formation of a p-n junction in 

semiconductor material that acts as a reverse biased diode.   

CIGS PV cells utilize another type of p-n junction called a hetero-junction that 

capitalizes upon the different semiconductor properties to achieve high solar conversion 

efficiencies.  CIGS TFPV cells have made recent advancements in efficiency according 

to the National Renewable Energy Laboratory (NREL). NREL indicates that CIGS cells 

achieved a laboratory record efficiency of 20.8% in 2013 [20]; meanwhile, manufacturers 

advertise the ability to produce cells with efficiencies of more than 15% for the general 

public [21].  These TFPV cells are appealing because of their affordability with respect to 

their efficiency, as noted in Figure 8. While other TFPVs boast much greater efficiencies, 

their cost far exceeds the practicality of their application for the general consumer, 

including the DOD.   

 

Figure 8.  Cost versus efficiency in solar cell technology (from [22]). 
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1. Solar Radiation and the Solar Spectrum 

The strength of the solar radiation on Earth is dependent upon a variety of factors 

ranging from atmospheric effects, latitude of the location, and the time of the year and 

day [23].  As solar radiation passes through the atmosphere, it experiences a reduction in 

power as a result of scattering and absorption by molecules and particulates in the air.  

Gasses have a tremendous effect on the absorption of photons because they have bond 

energies that are equivalent to specific wavelengths of light.  The absorption and 

scattering caused by these gasses reduces the intensity of the light that ultimately reaches 

the Earth’s surface as seen in Figure 9 [23].   

 

Figure 9.  The solar radiation spectrum across a range of wavelengths (from [24]). 

Outside the atmosphere, light has a solar radiation of approximately 1,367 W/m2 

[23]. To account for the absorption and scattering of photons, the path that light takes 

through the atmosphere with respect to the zenith is called the Air Mass (AM).  On the 

Earth’s surface, the solar radiation standard is AM 1.5 corresponding to a normalized 

solar radiation of approximately 1,000 W/m2 [23].  An illustration of angular properties 

of Air Mass is presented in Figure 10.  
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Figure 10.  A depiction of the characteristics of Air Mass (from [22]). 

2. Semiconductor Material and the Bandgap 

Semiconductor physics enable the capture of solar radiation for conversion to 

electrical power. Every semiconductor has varying atomic structures that provide 

different properties utilized to elicit a unique PV response [23].  When multiple 

semiconductor atoms join together to form a crystalline structure, they are held together 

by the covalent bonds that exist between adjoining atoms.   

Energy bands are determined by the allowable energy levels that an electron may 

occupy.  In semiconductors and insulators, the valence and conduction bands are 

separated by a gap that grows wider as the strength of the bonds between atoms increases.  

In that gap, called a band gap, there are no allowable energy levels for the electrons. In 

order to achieve conduction, the electrons must receive enough energy to “jump” the 

band gap.  In semiconductors, the bonds between atoms are readily broken, freeing up 

electrons capable of jumping the band gap to the conduction band.  The movement of an 

electron from the valence band to the conduction band generates a hole, or the vacancy 

left behind by the electron.  These holes are then filled by electrons from neighboring 

atoms. This process occurs throughout the material and once an electric field is applied, 

conduction will occur [25].  A graphical representation of the proximity between the 

conduction and valence bands is illustrated in Figure 11.  
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Figure 11.  A comparison of the conduction and valence bands in a conductor, 
semiconductor, and insulator (from [26]). 

3. P-N Junction 

A material is considered n-type when it has a high concentration of electrons and 

p-type with a high concentration of holes. When p-type and n-type materials form a p-n 

junction, the majority carriers begin to diffuse from one side of the junction to the other.  

This movement is called diffusion. Due to the existence of diffusion current, an electric 

field of charged ions called the depletion region forms at the junction of p-type and n-

type material.  The potential of the electric field created is called the barrier voltage, VO 

[26].  As a result of the exposed ions in the depletion region, a drift current develops that 

sweeps minority carriers from one side of the material to the other. When a kinetic 

particle, such as a photon, strikes an electron in the valence shell with sufficient energy to 

break the covalent bonds and jump the band gap, an electron-hole pair is generated.  The 

electric potential of the depletion region then sweeps the electron to the n-type material 

and the hole to the p-type material, as seen in Figure 12.  Ultimately, in a PV cell, the p-n 

junction is simply a reverse biased diode that maintains a voltage relative to the band gap 

of the semiconductor material [26].   
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Figure 12.  A demonstration of the photoelectric effect showing the Fermi level and 
carrier generation (from [6]).  

Without collecting the electron-hole pair in a PV cell, the pair recombines before 

the two can be separated depending upon the mobility of the carriers and the diffusion 

length for the semiconductor.  To form a solar cell, the current is harvested as electrons 

flow in the circuit from the n-type to p-type material [26].  The p-n junction is referred to 

as the absorption layer; the layer where electron-hole pairs are generated and separated. 

On top of the absorption layer, an anti-reflection layer permits light to pass through the 

cell and enter the p-n junction.  Finally, on either side of the cell, ohmic contacts provide 

a path for the electrons and holes and feed the current to the load and prevent 

recombination within the semiconductor [26].  

B. THIN FILM PHOTOVOLTAIC CELLS 

1. Thin Film Silicon 

Various manufacturing methods exist for creating TFPV cells depending on the 

desired efficiency or raw materials available. The basic silicon crystal (c-Si)-based TFPV 

cell structure is illustrated in Figure 13.  A high-quality c-Si absorber is grown upon a 

seed layer.  The absorber layer functions as the p-n junction of the cell. Then, the seed 

layer is applied to an inexpensive, flexible substrate.  The efficiency of this type of PV 

cell depends greatly on the quality of the epitaxial layer of silicon and drives the 
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relatively high cost of these types of PV cells [27].  NREL has attempted to create c-Si 

cells with efficiencies near that of CIGS; however, this technology is also expensive and 

difficult to manufacture [27]. 

 

Figure 13.  An example of the silicon solar cell structure (from [27]). 

The more common type of Si TFPV cell is the amorphous silicon (a-Si) pictured 

in Figure 14.  These cells are constructed with a transparent oxide followed by an 

absorber layer.  The absorber is grown with an intrinsic Si layer in between p-type and n-

type material.  The intrinsic layer increases the electric field within the absorber layer and 

prevents recombination through drift current. As a result of its amorphous crystalline 

structure, the material is riddled with defects that decrease carrier mobility and increase 

the potential for recombination and traps [28]. Ultimately, the efficiency of these TFPV 

cells has plateaued over the last decade at roughly 13% [28].   

 

Figure 14.  An example of the amorphous silicon cell (from [28]). 
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2. CIGS 

CIGS construction is based on a different concept than the traditional, Si TFPV. 

By utilizing different semiconductors to create a p-n junction, the CIGS cell is considered 

a heterojunction.  CIGS were created as a low cost alternative to the traditional solar cell 

because both the manufacturing process and the materials are cheaper in comparison 

[29].  A typical CIGS cell is presented in Figure 15.  Photons enter the cell through a high 

band gap zinc oxide layer before passing through an n-type Cadmium-Sulfur (CdS) 

buffer layer.  The absorber layer is comprised of a p-type CIGS layer that forms a p-n 

junction with the CdS buffer. These layers are then deposited upon a substrate that can be 

either rigid or flexible, depending upon the desired application [29].  

 

Figure 15.  The structure of a copper indium gallium selenide solar cell (from [30]). 

The absorber layer is traditionally made with CuInSe2; however, the introduction 

of Gallium increases the band gap of the material closer to 1.4 eV which is considered the 

optimal band gap for the solar spectrum.  CIGS is also a direct band-gap semiconductor 

and the majority of light is absorbed close to the p-n junction, reducing the chances of 

recombination within the absorber layer [29].  Additionally, the CIGS layer is a forgiving 

material with respect to defects in the lattice structure which reduces the cost associated 

with purification of the semiconductor material [29].  
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3. Cadmium Telluride 

Similar to CIGS, Cadmium Telluride (CdTe) cells are based on a hetero-junction 

of two different semiconductors that form a direct bandgap of 1.45 eV.  CdTe cells are 

lower in material and manufacturing costs; however, the toxicity of Cd can be a deterrent 

to some consumers.  Additionally, the careful doping of Gallium required for CIGS is 

unnecessary with CdTe. The cells are constructed with a glass layer on top of a 

transparent conductive oxide that acts as the top contact.  Next, a large band gap, n-type 

layer of Cadmium Sulfide forms a p-n junction with a layer of p-type CdTe. All of these 

layers are deposited upon a metal contact as seen in Figure 16 [28].  The efficiencies of 

CdTe cells in the laboratory have made substantial gains in 2013 and are vying with 

CIGS for the top contender in the TFPV market [30].  

  

 

Figure 16.  The structure of CdTe solar cell (from [30]). 
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IV. POWER INTEGRATION AND SOLAR ARRAY DESIGN 

In order to incorporate a solar array into the existing power infrastructure of the 

Raven AV, a power converter, maximum power point tracker (MPPT), and balance 

charger are required.  The power converter boosts the output of the array to the 

appropriate voltage for the AV, while the balance charger ensures equal charging of the 

individual Lithium cells of the battery. The MPPT uses an algorithm to maintain the 

greatest fill factor and efficiency possible as the power fluctuates due to external 

influences.   

Two different solar array designs are presented that explore various possibilities 

for CIGS integration. The first utilizes the standard-size wing with modular properties, 

and the second is for an extended center wing from [6].  Both designs are compared to 

demonstrate the difference in power generation based upon the efficiency of the CIGS 

installed.  

A. SOLAR CELL PARAMETERS 

In order to evaluate a PV cell, the open circuit voltage VOC, short circuit current 

ISC, and efficiency ƞ are used to characterize its performance.  The fill factor indicates the 

difference between the measurable power of a cell compared to its theoretical potential.  

To determine that potential output, VOC is measured when the p-n junction has reached 

equilibrium.  This value is equivalent to the voltage drop of the diode formed by the p-n 

junction.  Conversely, ISC is the maximum current of the PV cell when the p-n junction is 

shorted.  Those two parameters form the solid line of the IV curve in Figure 17.  



 24

 

Figure 17.  A typical IV curve for a PV cell (from [31]). 

The intersection of  Im and Vm in Figure 17 is called the maximum power point 

and determines the efficiency of the array.  In order to ensure operation at that point, an 

MPPT is required. The efficiency of the PV cell is determined by 
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P
   (2) 

the output power of the array compared to the input power of the photons striking the 

surface. Therefore, the input power is dependent upon the wavelength and air mass of the 

incident light. Meanwhile, the fill factor is determined by  
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the ratio of the measured voltage and current at the maximum power point with respect to 

ISC and VOC.   

1. Performance Factors  

Myriad factors degrade the performance and efficiency of PV cells.  To maximize 

the efficiency a cell, semiconductor physics, photon reflection, texturing, lattice structure, 

layer depths, and contact widths are just a few of the aspects that must be accounted for 

when designing PVs.  For more information on these factors, [32] offers a detailed 

analysis. The aforementioned aspects are outside the scope of this research and the stated 

objective; instead, those factors affecting a solar-integrated UAV are addressed.  A solar 

UAV is affected mostly by variations in the angle of incident light, temperature, and the 

solar irradiance of the operating environment. These characteristics dictate the fill factor 
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of a particular cell’s IV curve.  They shift the maximum power point and have the 

greatest effect on the performance of PV cells, as seen in Figure 18 [32].  

 

Figure 18.  The effect of incident sunlight and temperature on output current  
and voltage (after [32]). 

B. POWER INTEGRATION 

1. Maximum Power Point Tracker 

An MPPT is required to maximize the output of the solar array as the voltage and 

current vary due to external influences.  The MPPT shifts the operating point of the solar 

array in order to provide the most power to load.  It does this by continuously monitoring the 

current and voltage of an array at a fixed sampling frequency.  Calculating the power for each 

sample, we find that the MPPT adjusts its relative impedance to match the impedance of the 

array in order to maintain operation at the maximum power point [33].  Utilizing the example 

in Figure 19, we see that if the solar array is connected directly to a 12.0 V battery through a 

conventional controller, the output power is limited to 53.0 W.  Conversely, an MPPT 

matches the resistance of the load to calculate the optimal voltage in order to produce the 

highest power from the solar array.  When the MPPT is utilized, the array produces the full 

75.0 W available in the example [34].  Since the voltage output of the array will be either 

higher or lower than that required by the load, a DC-DC converter will ensure that the 

voltage supplied to the load is regulated to the proper amplitude.   
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Figure 19.  The basic operation of an MPPT (after [34]). 

2. DC-DC Power Conversion 

The output of the PV array cannot be directly applied to the existing power 

infrastructure of the Raven AV because it is unregulated.  In order to integrate the array, a 

DC-DC power converter must boost or buck the voltage to the appropriate level of the 

battery.  For the design in this research, the output voltage of the array will not be greater 

than the battery voltage, as is discussed in later sections.  Therefore, a boost converter is 

the appropriate device for integration with the Raven.  In Figure 20, the basic schematic 

of a boost converter is presented.  With the switch in the closed position, the diode is 

reversed biased, isolating the output from the input.  Meanwhile, the capacitor maintains 

the existing voltage of the load on the output.  In the open position, the output receives 

power from the combination of the inductor and the input which is fed directly to the load 

and charges the capacitor [35]. 

 

Figure 20.  A basic boost converter schematic (from [35]). 
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The output voltage of a boost converter is controlled by the duty ratio D, 

representing the amount of time the switch is on with respect to one period of the 

switching cycle.  The output voltage is then determined by  

 
1

.
1out inV V

D
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  (4) 

3. Balance Charger 

Finally, after the MPPT and DC-DC converter, a balance charger is the last power 

component separating the battery from the array. A balance charger decreases the risk of 

fire due to overcharging, a risk inherent to all Li-ion batteries [8].  Since the lithium 

battery of the Raven comprises multiple cells that discharge unequally during operation, a 

balance charger ensures that each individual cell is charged appropriately.  For example, 

the Ultra-Balancer selected by [8] and utilized in this research continuously monitors the 

voltage of each cell in the battery and prevents any cell from charging faster than the 

others.  When a cell voltage is higher than that of adjacent cells, it is discharged with   

150 mA current until the voltages are equal [8].    

C. SOLAR ARRAY 

1. Design  

Integral to the future acquisition of a solar integrated UAV is the modularity and 

portability associated with the current model.  In order to maintain those characteristics of 

the Raven, a modular wing design is presented.  Capitalizing upon the existing fasteners 

used to bind the three sections of the wing, we incorporate the positive and negative leads 

of the solar array into these connections for ease of integration.  The existing fasteners are 

made of aluminum and do not allow for proper conduction.   In order to ensure both an 

effective connection between wing sections and a durability to last multiple missions, the 

fasteners were redesigned. Installation procedures for the redesigned fasteners are located 

in the Appendix. This concept is shown in Figure 21 with an example connector to use 

for the wing interface.   
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Figure 21.  An example of the connector used to connect the wing sections. 

The standard wing of the Raven measures 2359.9 cm2 when treated as a single 

entity like the extended wing in [6] and not three different sections. Adjusted for the 

placement of CIGS which requires a small portion of the area for leads and thin spaces 

between cells, the effective area of the wing is approximately 1943 cm2. If CIGS are 

manufactured specifically for this wing, more of the theoretical area may be utilized.  The 

dimensions of the CIGS used for this research were a limiting factor and as such, only  

40 cells were installed on the wing as shown in Figure 22.  

 

Figure 22.  The solar array design for the standard Raven wing.  
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The array can be constructed in series to maximize the voltage potential or 

parallel to increase the overall current.  Choosing a series connected array for this design, 

the voltage output of the array is highest at a potential 19.0 V; however, the current is 

limited by the cell with the lowest current. The potential power produced under standard 

test conditions (STC) from this wing compared to the efficiency of the CIGS utilized is 

presented in Table 3.  STCs assume operation under AM1.5 at 25.0 C. Power calculations 

were determined from   

 2
2

1000 (0.1943 )( ).
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Table 3.   The power output of a standard wing design for various efficiencies. 

Efficiency of CIGS Theoretical Power 
10% 19.4 W 
15% 29.2 W 
20% 38.9 W 

 

The modified wing in [6] was also series connected with an effective surface area 

of 3180 cm2 for an expected output power of 29.6 W.  However, once constructed and 

tested in the Monterey Bay Area of California, the output power of the solar array 

measured between 10.0 and 14.0 W due to environmental factors and losses in the power 

circuitry.  As a result of the elongated wing, engineers witnessed a 37% increase in flight 

endurance and [6] demonstrated that an additional 20 to 70% increase in battery life is 

possible due to the solar array. The output power of an equal sized array with CIGS of 

varying efficiencies is calculated by (5) and presented in Table 4.   

Table 4.   The power output of a modified wing for various efficiencies. 

Efficiency of CIGS Theoretical Power 
10% 31.8 W 
15% 47.7 W 
20% 63.6 W 
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V. TESTING AND ANALYSIS 

Prior to any testing of a TFPV array, the Raven AV was tested to establish a 

baseline for all future measurements.  The modular solar array was then constructed and 

the power generation was measured under various conditions.  Finally, the array was 

integrated with the Raven AV, and the measurements were repeated to determine any 

differences from the baseline.  All tests and measurements were conducted in a laboratory 

environment and the AV was not flown.  

For data collection, the LabVIEW program was utilized to record all data 

measurements. This program interfaces directly with a dual display multimeter in order to 

simultaneously record both current and voltage dependent upon a user defined sampling 

frequency.  The LabVIEW data files used were those first coded in [6]. A basic schematic 

of the lab set up is presented in Figure 23. 

 

Figure 23.  A basic schematic of the test setup. 

A. SYSTEM TESTING AND CALCULATIONS 

1. System Configuration 

In order to determine the increase in endurance and payload provided by the 

array, a baseline must first be established.  To accomplish this task, the power consumed 

by the Raven was determined over a range of throttle settings with five different batteries 

and three AVs.  The average current at each throttle setting is an indicator of how much 

power a TFPV array must produce to replace the Li-ion battery during flight.   
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The rechargeable Li-ion polymer battery for the Raven system is depicted in 

Figure 24.  Along the top surface are positive and negative leads that interface with the 

AV circuitry when inserted in the fuselage. The thin strip of connection ports along the 

edge of the battery are used for charging purposes only and provide access to the 

individual cells to ensure a balanced charge.  At a full charge the battery measures 25.2 V 

with a capacity of 3.9 A-hours.  During operation, the GCS displays a low battery voltage 

warning when it detects the battery voltage is at 21.9 V, an indication of 10 to 15 minutes 

of flight time remaining. The Raven system automatically lands the AV if the battery 

reaches an extreme low voltage of 19.0 V [11].  This emergency procedure protects the 

AV because as the voltage of an individual Li-ion cell drops below a lower threshold of 

approximately 3.0 V, it permanently damages the cell and limits the capacity of the entire 

battery [8]. 

 

Figure 24.  The RQ-11 Raven rechargeable lithium ion battery.  

2. Power Consumption 

Current draw is an indicator of the power drawn by the aircraft in each throttle 

setting.  According to [36] and [11], the AVs throttle is set to 100% to achieve the desired 

operating altitude, typically between 100 and 300 ft [37].  With a climb rate of  

800 ft/min, the operator is expected to achieve the proper altitude within 20 s [11].  In 
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order to maintain altitude during flight, a typical throttle setting is between 50% and  

55% [36].  In order to lower the altitude, a 45% throttle is commanded and for a climb a 

65% throttle is utilized.  However, [36] indicated that Raven operators are instructed to 

place the aircraft in an autonomous mode during a mission.  In this mode, the operator 

does not control the throttle.  The AV automatically adjusts the amount of voltage and 

current drawn from the battery in order to maintain an airspeed of 26 knots at the 

commanded altitude.  Whatever power the AV draws in this mode is not displayed or 

recorded for the operator. Therefore, for this research a throttle setting of 100% is 

commanded for 20 s to simulate the climb to operational altitude followed by a setting of 

50% to approximate the power required to maintain altitude during the preponderance of 

a typical operation.  The set up for this period of testing is displayed in Figure 25.  

 

Figure 25.  The set-up for the baseline testing of current draw and endurance. 

To start, the current at each throttle setting was determined with multiple 

measurement devices, AVs, and batteries to produce the average current values presented 

in Table 5 and graphed in Figure 26.  Previous research from [8] is also plotted in Figure 

26 for comparison.  
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Table 5.   The average current of the Raven AV at different throttle settings. 

Throttle Current (A) 
0% 0.62 
25% 1.23 
30% 1.40 
35% 1.64 
40% 1.96 
45% 2.29 
50% 2.79 
55% 3.42 
60% 4.19 
65% 5.08 
70% 6.32 
75% 7.75 
80% 9.58 
85% 11.61 
90% 14.36 
95% 15.97 
100% 18.25 

 

Figure 26.  Average current draw of the Raven B, DDL variant at multiple throttle 
settings compared to the Raven B data (from [8]). 
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The relatively large magnitudes of current were alarming because they are greater 

than the measurements recorded and utilized for simulations in [6], [8], and [38].  After 

further analysis, it appears that the Raven A and Raven B drew far less current than the 

Raven B, DDL variant.  These differences render the benefits predicted by previous 

research void and require a whole new set of simulations and calculations to account for 

the higher power requirements of the enhanced digital system.  To eliminate the batteries 

as a source of error, PMA-263 provided an additional complement of batteries, but the 

test results remained consistent.  It is possible that the three AVs utilized for this research 

have higher power requirements due to long term storage effects or previous damage.  

Further research is required to confirm whether or not the AVs utilized are an anomaly or 

are indicative of a full mission capable Raven. Nevertheless, the power requirements 

measured in this portion of the research are utilized as the baseline parameters for the 

remaining analysis.  

3. Average Endurance 

The average endurance was determined by conducting a ground test of the AV 

with a throttle setting of 100% for the first 20 s followed by a setting of 50% until the 

GCS indicated the battery voltage reached 21.9 V. This testing procedure was repeated 

with two different AVs and five different batteries to determine an average endurance of 

29.97 minutes presented in Table 6.  The total mission time of 44.97 minutes can be 

calculated by adding 15 minutes to account for AV retrograde.  Averaging approximately 

45 minutes, the total mission time observed in the baseline tests is consistent with what 

[36] predicted based on his experience with the Raven B, DDL.  The results of the battery 

voltage endurance tests are also presented in Figure 27. These times are significantly 

shorter than [8] and [6] but are consistent with the current draw measurements in the 

previous section.  One cause for the difference between this research and previous work 

is the interpretation of the AV voltage. For these tests, the voltage transmitted by the AV 

and displayed on the GCS was utilized to determine the end of each measurement. 

Conversely, in [8], the voltage indicated on the voltmeter was used to determine the 

conclusion of the test.  This subtle difference accounts for upwards of 20 to 30 minutes  

of flight time because the voltage indicated by the multimeter was approximately  
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0.3 V greater than the voltage reported by the AV.  Nevertheless, despite this procedural 

difference, the endurance of the Raven B, DDL is significantly shorter than the analog 

Raven as illustrated in Figure 28.  

Table 6.   The average endurance and power requirements of the Raven B,  
DDL operating at 50% throttle. 

Test  Time (min) 
Average  Power from 

Battery (W)  

1  22.90  72.19 

2  27.50  71.39 

3  32.50  69.91 

4  30.92  70.18 

5  30.32  69.35 

6  35.70  69.36 

Averages  29.97  70.40 

 

 

Figure 27.  The results of the Raven B, DDL battery voltage endurance tests.  
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Figure 28.  A comparison of the battery voltage endurance tests for the Raven B and 
Raven B, DDL platforms (from [8]). 

Furthermore, the average power required to maintain a 50% throttle position was 

67.0 W; however, the peak power at 100% throttle averaged 381.0 W.  By comparison, 

the power consumed by [6] at 55% throttle was approximately 30.0 W, less than half the 

power required for the Raven B, DDL.   In summation, baseline testing confirms that the 

Raven B, DDL variant of the RQ-11 has a shorter endurance and higher power 

requirements than the analog Raven variant used for testing in [6], [8], and [38]. 

B. PAYLOAD TESTING AND CALCULATIONS 

Analyzing the connection port used for the AV to interface with the EO and IR 

payloads, we measured the voltage and current draw of those payloads.  To determine the 

voltage provided to the payload, a voltmeter measured the electric field potential of the 

connection port while the AV was running.  The current drawn by the EO and IR cameras 

was determined by monitoring the device through the LabVIEW program as the payloads 
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were disconnected, installed, and run through the full gambit of operation.  The results of 

this experiment are displayed in Figure 29. 

 

Figure 29.  The current measurements used to determine payload power requirements. 

While disconnected from the AV, the connection ports of the interface indicated a 

maximum voltage of 16.0 V is supplied to the payload. The current drawn from the 

battery and supplied to the AV in this configuration was 0.395 A.  To determine how 

much current was directed to the payloads, the EO and IR cameras were attached, and the 

difference indicates the amount of current that is required to operate the respective 

payloads.   

There are multiple settings for the EO payload that the user can choose.  Selecting 

the front or side look camera, the user can then set the zoom level of the payload.  

Furthermore, the user has the option to view the camera in a filtered mode that reduces 

over-exposure.  Toggling through the various settings of the EO payload, the highest 
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current draw was measured at 0.587 A while the camera was in the side look mode at the 

highest zoom level.  With the IR payload attached, the user may select black-hot or 

white-hot modes of operation.  Additionally, the user can toggle the IR illuminator.  The 

current was relatively constant for every setting of the IR payload and peaked at 0.564 A.  

From these data it was determined the EO camera requires 187.0 mA for 

operation while the IR camera draws slightly less current at 164.0 mA.  Accounting for 

the voltage measured at the interface of the payload and the AV, we see that the payloads 

require anywhere from 2.62 W to 2.99 W for normal operation.  Considering that the 

measured values do not represent the limitations of the payload, it is assumed that a 

margin between continuous and peak current is accounted for in the design. For this 

reason, to consider an alternative power source for the payload, we assume that a solar 

array must be capable of providing a continuous power of 6.0 W and handling more in 

power surges.  

The solar array designed in Chapter IV for the standard wing of the Raven AV 

has a theoretical power output of 19.0 W for low efficiency CIGS of 10%.  This power 

output is a promising alternative for operating the current payloads of the Raven B, DDL 

variant and for future, more demanding payloads.  

C. SOLAR ARRAY TESTING 

1. Final Modular Array Construction 

To maintain the modular design of the Raven, commercial power cables were 

chosen to replace the wing pin and wing cup that connect the three portions of the wing.  

After purchasing a variety of different cable assemblies, cable part number 839-1173-ND 

from DigiKey was selected for the design because its shape closely matched the 

dimensions of the existing fasteners.  Next, the instructions for the removal of the wing 

pin and wing cup were found in the 2008 edition of the Raven B Small Unmanned Aerial 

System Intermediate Level Repairs Manual [39].  Following those instructions, the wing 

pin and cup were removed from the three wing sections.  A drill was then used to expand 

the remaining holes in the wing to accommodate the power cables.  Small holes were also 

drilled into the underside of the wing to provide access to the leads of the cable.  Lastly, 
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an epoxy was used to ensure that the leads were firmly seated in the wing. The final 

product is displayed in Figure 30. 

 

Figure 30.  The installation of the cable assembly in place of the wing pin and wing cup.  

Once the wing pin and cup were installed, construction of the solar array began. 

The CIGS utilized for the array were from Global Solar Energy, the same cells used in 

[6].  Unfortunately, the CIGS had most likely degraded from the 13% efficient cells they 

once were due to oxygen exposure and handling over time. Without the ability determine 

efficiency with a solar simulator, the efficiency was estimated to be between eight and 

ten percent.   Despite the reduction in efficiency, the CIGS were still expected to provide 

a significant amount of power to both expand the payload capacity and endurance of the 

Raven B, DDL.   

The procedures for handling, cutting, and sealing the array from [6] and [8] were 

used to construct the array in this research.  The CIGS utilized for the array were not 

encapsulated and were arranged in a series connected sheet of 18 cells. Each individual 

cell was 10.0 cm long by 21.0 cm wide.  For the array design in Chapter IV, 40 solar cells 

needed to be fashioned from the series connected string to adhere to the wing sections.  

The cells on the center wing were cut to approximately 45.0 cm2, while the side wings 
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had cells that were 50.0 cm2. It was assumed that the current would be slightly lower in 

the side wings because they would not directly face the sun; therefore, the cells on the 

side wings were larger to account for the angle of incidence with the sun and increase 

their current production.  

During construction, it was discovered that cutting the CIGS across the center 

busses proved both challenging and detrimental to the output of the solar cell.  As a 

result, the design in Chapter IV was modified to reduce the number of cuts and solder 

connections required to build the array.  This design change reduced the overall number 

of CIGS to 38 series connected cells but proved to be a more efficient method of 

construction.  Once the CIGS were cut to the proper dimensions, they were all tested 

individually to ensure they were not damaged. First soldered together and tested on a 

workbench in the appropriate design, the solar cells were then applied to the surface of 

the wings.  Double-sided tape held the cells in place while common packaging tape was 

used to encapsulate the CIGS on the wing.  As predicted by the test results in [6] and [8], 

a boost in performance was witnessed after the CIGS were encapsulated.   

Next, the leads of the array were soldered to the power cables that were 

previously installed in the wing.  Copper tape was used to both hold the leads in place 

and ensure a conductive path for the current.  Since it was known that this prototype 

would not be used in flight, measures were not taken to reduce the effects of the exposed 

leads on the aerodynamics of the airfoil.  In application, these leads can be recessed into 

the wing and sealed to guarantee a smooth surface. Additionally, as a result of the power 

cables chosen, the side wings did not sit flush with the center wing.  In future 

applications, a more suitable connector may be chosen that will enable the wings to mate 

properly with one another. The final array is presented in Figure 31.  
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Figure 31.  The final array demonstrating the wing’s modular properties. 

In total, a surface area of 1,828 cm2 was covered by the CIGS.  Assuming a  

10% efficient cell, the power output of array was expected to be 18.3 W under AM1.5 

conditions. For all measurements of the solar array, the Amprobe SOLAR-600 Solar 

Power Analyzer was used. This solar analyzer produced IV curves for all measurements 

and also displayed maximum power point data. Through repeated testing on a relatively 

cloudy day in Monterey, CA, where the average solar irradiance is less than AM1.5, the 

average power generated by the array was 11.2 W.  At this maximum power point, the 

voltage was approximately 14.0 V and the current was roughly 800.0 mA. It was found 

that any losses from the modular design were negligible and that the power cable 

connections performed as intended.  A typical IV curve of the final array is presented in 

Figure 32.  The fill factor averaged a disappointing 56.9% on the first day of testing; 

however, the power generated by the array was promising.  
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Figure 32.  IV curves for the final solar array with the maximum power point indicated. 

2. MPPT, Boost Controller, and Balance Charger Incorporation 

Since the fill factor and IV characteristics of the array were less than optimal, it 

was imperative to have an effective MPPT and Boost Controller.  The MPPT chosen for 

this research was a combined MPPT and Boost Controller that was also utilized in [8].  

The SPV1020 DC-DC boost converter by ST Microelectronics utilizes an embedded 

MPPT algorithm that advertises an efficiency of up to 98%.  This MPPT/Boost Controller 

was chosen because of its high efficiency and low weight. In [8], the SPV1020 failed to 

achieve the levels of efficiency desired; in that research the input voltage was partitioned 

to 6.0 V with respect to the intended output voltage of 24.2 V.  Boosting the voltage by a 

factor of four greatly reduced the efficiency of the DC-DC converter.  This research 

focused on increasing the voltage of the array to reduce the stress on the DC-DC 

converter and increase the overall efficiency of the system.  To accommodate the 

modular array’s measured open circuit voltage of 22.0 V, it was necessary to replace a 
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chip resistor on the SPV 1020.  By replacing the R2 resistor on the circuit board, the 

output voltage of the device remained at 24.2 V, but the input voltage was scaled to 20.5 

V according to the equation in [40],  

1

2

1
1.25

OCVR

R
   . (6) 

The resistor values for the MPPT/Boost Controller are shown in Table 7.  Specifications 

and schematics for the SPV 1020 can be found in [40].   

Table 7.   The resistance of the surface mounted resistors used for voltage partitioning 
in the MPPT/boost controller. 

Parameter Value (ohms) 
R1 732 k 
R2 47 k 
R3 2.55 M 
R4 110 k 

 

To verify the MPPT was operating effectively, a 50.0 Ω, high power resistor was 

used to simulate the Raven B, DDL as shown in Figure 33.  By measuring the current and 

voltage at each node in the circuit, it was shown that the MPPT/Boost Controller 

maintained an output voltage of 24.0 V while the array operated at its maximum power 

point, corresponding to a voltage of 14.0 V.  Proving the MPPT accurately tracked the 

voltage and the DC-DC converter appropriately boosted the voltage, we determined the 

SPV1020 was properly configured for the integration with the Raven system.  

 

Figure 33.  A load test of the MPPT/boost controller to confirm the functionality of the 
power circuit equipment.  
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Finally, a balance charger was required as discussed in Chapter IV.  The balance 

charger chosen was the Ultra-Balancer from Common Sense RC.  The proven track 

record of the balance charger in [6] and [8] combined with its sleek design and light 

weight made it an easy choice.   

3. System Configuration 

The final configuration of the system components is shown in Figure 34.  The 

solar array is connected to the SPV1020 MPPT/Boost Controller followed by the Li-ion 

battery with the balance charger in parallel.  A blocking diode to stop current flow from 

the battery to the solar array was unnecessary because it is incorporated in the SPV1020 

schematic [39].   Finally, the Raven AV is linked to the battery.  With the power circuitry 

assembled, full system testing was possible.  During testing, the current and voltage 

supplied to the AV was monitored using LabVIEW, while the power supplied by the 

array was measured with handheld multimeters.  A fan was positioned next to the solar 

array in order to reduce temperature effects on the array and simulate the cooling effect 

caused by the passage of wind over the wing.   

 

Figure 34.  The test configuration for the solar-powered Raven B, DDL. 
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D. FULL SYSTEM TESTING 

1. Results of Integrated System 

Prior to full system testing, the solar array was inadvertently subjected to a water 

intrusion test.  Recent rains in Monterey Bay caused the roof of the solar lab to leak, and 

the solar array sat in a small layer of water for up to 48 hours.  Upon cleaning and drying 

the wing, the output of the CIGS remained unchanged compared to baseline tests.  

Therefore, results of the water intrusion test support the hypothesis that with proper 

encapsulation a solar integrated wing is appropriately protected from the elements.  

Once it was determined the solar array was undamaged from the water intrusion 

test, full system testing commenced. The integrated system was evaluated in the same 

fashion as the baseline endurance tests.  The test started when the battery was connected 

to the AV and concluded when the GCS indicated a low voltage warning of 21.9 V.  As 

conducted previously, the throttle was set to 100% for the first 20 s before it was reduced 

to 50% throttle for the remainder of the trial.  The tests were conducted on the roof of 

Spanagel Hall at the Naval Postgraduate School in Monterey, California, and each trial 

was conducted between the hours of 1100 and 1600.  Cloud cover was minimal 

throughout testing; however, periodic clouds would shade the array and cause the power 

output to fluctuate.  A picture of the actual test set up is shown in Figure 35. 

 

Figure 35.  The test set-up for the full system configuration 
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In total, six different batteries and two fuselages were used for six trials of the 

solar tests.  At the conclusion of testing, it was determined that the endurance of the AV 

with the solar array attached increased by an average of roughly 15 minutes, 

corresponding to an increase of 48.87%.  A graph of the solar tests compared with the 

baseline is presented in Figure 36.  It is immediately apparent from Figure 36 that the 

magnitude of the general slope of the solar tests is less than that of the baseline.  This 

slope was expected because the power provided by the array would reduce the discharge 

rate of the battery voltage. The measured endurances from the solar tests covered a 

greater range than the baseline; however, this was due to the fluctuations in solar 

irradiance and atmospheric conditions at the time of testing.   

 

Figure 36.  The results of a solar integrated Raven B, DDL endurance test compared to 
the baseline endurance. 
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A summary of the solar integrated tests is listed in Table 8.  Of note, the average 

power shown in Table 8 is significantly lower than the values from the baseline tests in 

Table 6.  Calculating the difference in power supplied from the battery during each phase 

of testing gives the power generated by the solar array.  Averaging 14.9 W, this 

magnitude is consistent with the observed output of the MPPT.  To confirm this 

observation, the IV characteristics of the array were investigated. Before each trial, the IV 

characteristics of the array were measured with the solar analyzer to produce the IV 

curves illustrated in Figure 37.  From Figure 37, it is seen that the solar analyzer 

measured the maximum operating point at an average of 14.1 W. During testing, the 

MPPT fixed the array’s operating point near the maximum power points indicated by the 

circles in Figure 37.  Depending upon the irradiance during each subsequent trial, the 

operating point would fluctuate to provide the maximum power to the MPPT which was 

then boosted to 24.2 V and delivered to the AV at approximately 0.56 A.  Therefore, the 

predicted output power of the array closely matches the data collected during endurance 

testing. 

Table 8.   The results of the solar integrated Raven B, DDL endurance tests. 

Test 
Time 
(min) 

Percent Increase (%)
Average  Power 
from Battery (W)  

1  38  26.79%  63.89 

2  47.97  60.06%  54.39 

3  44.71  49.18%  53.48 

4  39.92  33.20%  53.85 

5  41.98  40.07%  54.34 

6  55.12  83.92%  53.19 

Averages  44.62  48.87%  55.52 
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Figure 37.  The IV characteristics of the solar array measured prior to endurance testing. 

As discussed previously, the power requirement of the current IR and EO 

payloads is approximately 6.0 W.  The measured 14.0 W provided by the array is more 

than sufficient to handle the power requirements of the payloads.  Furthermore, the array 

has an additional 8.0 W available to extend the endurance of the AV, power simultaneous 

payloads, or handle a single, more demanding payload.  In summation, the solar array 

would provide flexibility to the Raven B, DDL platform.   

2. Full System Testing with Greater Efficiency CIGS 

For the low-efficiency CIGS used in this research, 14.9 W were provided to the 

AV.  More efficient cells will increase that power production because they will provide a 

higher level of short-circuit current for the same open-circuit voltage.  As an example, if 

the efficiency of the cells were doubled under AM1.5 conditions, the array would be 

expected to double the output power of what was witnessed in this research. With an 

output power of 30.0 W, these CIGS would extend the endurance of the AV to 

approximately 2.0 hours, according to  
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hrs. (7)      

In (7) the battery capacity of 98 W-hours is reduced by the energy required to maintain a 

throttle position of 100% for 20 s and an AV retrograde of 15 minutes.  The adjusted 

battery capacity is then divided by the current drawn from the battery at the 50% throttle 

setting.  Additionally, all currents from Table 5 and listed in (7) are reduced by the 

amount of current provided by the array.  This solution fails to account for a safety factor 

so that the Li-ion batteries do not discharge to dangerous levels; however, it is an 

appropriate approximation.  

3. Cost of Implementation 

It is possible that using more efficient TFPV cells may be a cost-prohibitive 

endeavor with respect to the cost of the Raven system.  For fiscal year 2013, the Raven 

system cost $110,000, or approximately $36,000 per AV according to [41].  The CIGS 

utilized in this research cost $100, and the associated power circuitry accounted for an 

additional $150 [6],[8].  Including labor and miscellaneous equipment, it is estimated that 

the cost required to outfit the Raven system would be roughly $1000 [6].  However, it is 

assumed that the price per unit would drop if implemented across the entire fleet. For the 

relatively low power requirements of the analog variant, the increase in price for the 

Raven system is sensible as discussed in previous theses.  Conversely, for the digital 

Raven B, DDL, the user receives fewer benefits at the same cost.  As TFPV technology 

matures and the price per watt reduces further to an economical level with respect to the 

cost of the platform, the concept appears to be an effective way to boost power 

production at a relatively low cost [41].   

E. SCAN EAGLE APPLICATION 

Since the current draw of the Raven has increased between the variants, the 

feasibility of developing a solar powered UAV from the current DOD inventory appears 

less likely than previous research indicated.  However, as stated, the ability of a TFPV 

array to power additional payloads is a promising alternative.  Not only can this concept 
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be applied to Group 1 UAVs, the integration of TFPVs with Group 2 and Group 3 assets 

can expand the payload capacity of the existing platforms.  While the endurance of these 

larger, gas-powered UAVs is quite substantial, the payload capacity is limited.  Solar 

integration expands that capacity for day time operations at a relatively low cost. For 

example, the approximate useable surface area of a Scan Eagle is 5900 cm2 when only 

the wings are utilized for TFPV application. This sized array would generate a substantial 

amount of power for additional payloads with minimal weight added to the AV.  A 

comparison of the power generation of a solar integrated Scan Eagle under various AM 

conditions and TFPV efficiencies is calculated in Table 9 from (5). 

Table 9.   Comparison of power generated by a TFPV integrated Scan Eagle at 
varying efficiencies and air mass. 

Air Mass Efficiency of TFPV Power Generated 
1000 W/m2 10% 59.0 W 

15% 88.5W 
750 W/m2 10% 44.3 W 

15% 66.4 W 
500 W/m2 10% 29.5 W 

15% 44.3 W 

 

It is expected that with the power provided by the array in Table 9, the Scan Eagle 

is capable of powering additional payloads without taxing the engine or consuming any 

of the battery life during daytime operations.  
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VI. CONCLUSIONS AND RECOMMENDATIONS 

The methods and limitations of expanding the payload capacity and extending the 

endurance of the RQ-11B, DDL Raven system by outfitting the wing with an array of 

CIGS solar cells were explored in this thesis.  To start, this research examined current 

DOD policy regarding renewable energy sources and fiscal constraints of the current 

economy in Chapter I.  Then, in Chapter II, the UAV inventory was introduced, and the 

RQ-11 Raven system and its multiple variants were explored.  Capitalizing on the efforts 

of previous research at the Naval Postgraduate School and to provide a point of 

comparison, we focused primarily on the Raven system.   

Once the subject platform was adequately described, the basics of the 

photovoltaic effect and various types of TFPVs were discussed in Chapter III.  Due to 

their listed advantages and current availability, CIGS were chosen for integration.  In 

order to demonstrate how the CIGS could be evaluated and incorporated with the Raven 

system, the associated power circuitry was introduced and selected in Chapter IV. With 

the background information and design solidified, experimentation began by establishing 

a baseline of performance in Chapter V.  This baseline was then used to evaluate the 

benefits of the fully integrated design.   

A. ANALYSIS OF FINDINGS 

The design of the CIGS array in this research focused on creating a product that 

maintained the expeditionary and modular nature of the current platform.  Choosing to 

utilize traditional power cables in place of the wing pin and cup connectors that are 

currently utilized in the Raven, we found that an array could be incorporated in the wing 

with undetectable power losses as a result of the additional connections.  Over the course 

of the testing process, one of the connectors loosened from use.  It became loose because 

it was not sealed in place with the procedures listed in the maintenance manual for 

replacement of the pin and cup due to asset availability.  If sealed and aligned properly, 

the power cable would have fared better during testing.  If implemented in the fleet, it is 

recommended that a more robust power cable be designed specifically for the wing.  This 
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cable should maintain the structural integrity of the current system but utilize the concept 

set forth in this research.  One idea would be to use a smaller power cable that may be 

housed in the existing pin and cup.  

An important contribution of this thesis occurred during establishment of a 

performance baseline and the validation of the previous research conducted in [6] and [8].  

Monitoring the current and voltage during ground tests, it was immediately apparent that 

the Raven B, DDL variant had much higher power requirements than previous variants.  

After multiple iterations of testing and research, it was confirmed that the Raven B, DDL 

consumed two to three times the current as the analog versions of the platform.  At this 

point in the research, the endurance enhancements predicted by the CIGS array designed 

in [6] and [8] were no longer valid.  Further testing was required to determine the actual 

endurance of the platform and the increase in endurance established by an incorporated 

solar array.  

Averaging a baseline endurance of only 30 minutes before reaching the low 

battery voltage warning, the CIGS array enabled the AV to operate for nearly 45 minutes 

under similar test conditions.  With a solar array integrated with the AV, a 48.87% 

improvement was documented over the course of six trials.  It is expected that in 

environments with greater solar irradiance and more efficient cells that this figure will 

improve; however, geography cannot dictate the employment of this platform.   The 

improvements made to the Raven B, DDL variant drastically diminished the endurance 

benefits of incorporating a TFPV array with the power circuitry.   

While the endurance benefits were hampered by the improvements to the digital 

Raven platform, the power produced by the array may still be harnessed and applied 

elsewhere in the system.   Payload testing concluded that approximately 6.0 W are 

required to operate a single payload.  The 14.0 W generated by low efficiency CIGS are 

more than sufficient to expand the payload capacity of the Raven.   With higher 

efficiency TFPVs, that benefit increases tremendously.   

Ultimately, with the current efficiencies of TFPVs and the increased power 

requirements of the Raven RQ-11B, DDL variant in mind, the concept of a completely 
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solar powered Raven is less likely.  However, the benefits of a TFPV array integrated 

with the wing are not limited to endurance.  An expansion of the payload capacity would 

benefit the warfighter by expanding the capabilities and the potential mission set of the 

platform.  Additionally, the solar wing would provide a much needed power source in 

austere and isolated environments.    

B. RECOMMENDATIONS FOR FUTURE WORK 

1. Verify Current Consumption of Raven RQ-11B, DDL 

The power consumption of the RQ-11B, DDL in this research was almost triple 

the consumption of the analog RQ-11B.  To confirm these findings, a broad range of RQ-

11B, DDL systems should be tested to confirm that the high power requirements are not 

an anomaly for the Raven system that was provided by PMA-263.   

2. Measure the Current of AV in Autonomous Flight  

When placed in autonomous mode, the user has no indication of the throttle 

position or power drawn from the battery.  It is possible that in autonomous mode, the 

motor’s speed controller throttles down to a lower current draw in order to maintain a 26 

knot cruising speed.  Until the current and voltage are measured in flight, the true power 

consumption of the Raven may differ from the ground tests in this research.   

To conduct these measurements, a simple data logger could be incorporated in the 

AV circuitry to periodically sample the voltage and current provided by the battery.  This 

information will also be useful for endurance simulations from past research.  

3. Conduct Research with Gas Powered Motors 

Simplistic calculations to determine the potential power generation of an array 

installed on the Scan Eagle were provided in this research; however, the concept can be 

applied to a wide range of Group 2 and Group 3 UAVs.  These UAVs provide a much 

larger surface for solar integration and would reduce the horsepower requirements of the 

motor by powering the payloads during daytime operations.  This power balancing can 

extend both the capabilities and endurance of larger platforms.  
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4. Refine the Wing Interface Design 

Since the power cables that replaced the wing pin and cup were of a rudimentary 

design, further research is required to create a connector that provides the structural 

integrity and reliability provided by the existing interface.  This research is required 

before the concept could be implemented.  
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APPENDIX.  PROCEDURES TO REPLACE WING CONNECTORS 

A. WING PIN REPLACEMENT PROCEDURES 

 

1 Heat the wing pin with a solder tip or torch until the epoxy becomes tacky. 
 

2 Remove pin with pliers and let cool. 

3 Smooth out vacancy with drill bit to increase size of hole to 0.9cm wide and 4cm 
deep. 
 

4 Drill small hole into underside of wing, 4cm from connection side of wing 

5 Place male end of power cable assembly P/N 839-1173-N, MFG P/N 10-00464 in 
vacancy. 
 

6 Feed cable leads through small hole in underside of wing. 
 

7 Apply epoxy or sealant to power cable and vacancy. 

8 Maintain proper alignment of cable assembly and let cure. 

B. WING CUP REPLACEMENT PROCEDURES 

1 Insert a drill bit that fits snug in wing cup. Heat drill bit with a solder tip or torch 
until it expands and the epoxy becomes tacky. 
 

2 Remove bit and wing cup with pliers and let cool. 

3 Smooth out vacancy with drill to increase hole to 0.9cm wide and 5.5cm deep. 
 

4 Drill small hole into underside of wing, 5.5cm from connection side of wing 

5 Place female end of power cable assembly P/N 839-1173-N, MFG P/N 10-00464 in 
vacancy.  
 

6 Feed cable leads through small hole in underside of wing.   
 

7 Apply epoxy or sealant to power cable and vacancy. 

8 Maintain proper alignment of cable assembly and let cure. 



 58

THIS PAGE INTENTIONALLY LEFT BLANK 



 59

LIST OF REFERENCES 

[1] Department of Defense. “Unmanned systems integrated roadmap FY2013–2038,” 
DOD, Washington, DC, Reference Number 14-S-0553., 2013 [Online]. Available: 
http://www.defense.gov/pubs/DOD-USRM-2013.pdf  

[2] United States Marine Corps, “2012 U.S. Marine Corps S&T strategic plan: 
leading edge technology for Marines of tomorrow,” DOD, Washington, DC, 2012 
[Online]. Available: 
http://www.hqmc.marines.mil/Portals/160/Docs/USMC%20S_T%20Strat_Plan_2
012_Final_31_%20Jan.pdf    

[3] North Central Texas Council of Governments, “North Central Texas regional 
general aviation and heliport system plan,” North Central Texas Council, 
Arlington, Texas, 2011 [Online]. Available: 
http://www.nctcog.org/aa/jobs/trans/aviation/plan/UnmannedAircraftSystemsRep
ort.pdf  

[4] D. Kuhn. (2009, Oct. 19). Unmanned Aerial Vehicles keep watch in Afghanistan.  
American Forces Press Service [Online]. Available: 
http://www.defense.gov/News/NewsArticle.aspx?ID=56281  

[5] Northrop Grumman. (2014, Jan.). Global Hawk [Online]. Available: 
http://www.northropgrumman.com/capabilities/globalhawk/Pages/default.aspx  

[6] J. V. Coba, “Application of copper indium gallium diselenide photovoltaic cells to 
extend the endurance and capabilities of the Raven RQ-11B Unmanned Aerial 
Vehicle,” M.S. thesis, Dept. of ECE, Naval Postgraduate School, Monterey, 
California, 2009. 

[7] W. Hurd, “Application of copper indium gallium diselenide photovoltaic cells to 
extend the endurance and capabilities of unmanned aerial vehicles,” M.S. thesis, 
Dept. of ECE, Naval Postgraduate School, Monterey, CA, 2009.   

[8] C. Gromadski, “Extending the endurance of small unmanned aerial vehicles using 
advanced flexible solar cells,” M.S. thesis, Dept. of ECE, Naval Postgraduate 
School, Monterey, CA, 2012. 

[9] MicroLink Devices. (2013). Photovoltaics [Online]. Available: 
http://mldevices.com/index.php/products-a-services/photovoltaics  

[10] AeroVironment. (2014). UAS: RQ-11B Raven [Online]. Available: 
http://www.avinc.com/uas/small_uas/raven/  



 60

[11] Raven B Small Unmanned Aircraft System with Digital Data Link Operator’s 
Manual, Rev. B., DOD, Washington, DC, Reference Number 60707_A1., 2012. 

 [12] Defense Industry Daily Staff. (2012, Apr. 12). Ravens, mini-UAVs winning gold 
in Afghanistan’s commando ‘Olympics’. Defense Industry Daily [Online]. 
Available: http://www.defenseindustrydaily.com/raven-uavs-winning-gold-in-
afghanistans-commando-olympics-01432/  

[13] D. Wasserbly. (2009 Aug. 18). US Army’s Raven datalinks to go digital. 
International Defense Review [Online]. Available: IHS Jane’s,  
https://janes.ihs.com/CustomPages/Janes/DisplayPage.aspx?DocType=News&Ite
mId=+++1106519&Pubabbrev=IDR [Accessed March 12, 2014] 

[14]  IHS Jane’s. (2013, Aug. 19). AeroVironment Raven [Online]. Available: 
http://search.janes.com. [Accessed March 12, 2014] 

[15] AeroVironment. (2014). UAS: WASP AE [Online]. Available: 
http://www.avinc.com/uas/small_uas/waspAE/  

[16] AeroVironment. (2014). UAS: RQ-20A Puma AE [Online]. Available: 
http://www.avinc.com/uas/small_uas/puma/  

[17] K. Johnson. (2008 Jan. 22). Downside of full combat load examined. Marine 
Corps Times [Online]. Available: 
http://www.marinecorpstimes.com/article/20080122/NEWS/801220310/Downsid
e-of-full-combat-load-examined  

[18] Draganfly Innovations Inc. (2014). DraganFly Tango [Online]. Available: 
http://www.draganfly.com/uav-airplane/tango/   

[19] Dara Aviation Inc. (2006). Dara Aviation specializing in the innovation and 
development of lightweight Unmanned Aerial Vehicles [Online]. Available: 
http://www.daraaviation.com/index.html  

[20] National Renewable Energy Laboratory. (2014 Mar. 19). Silicon materials and 
devices R&D [Online]. Available: 
http://www.nrel.gov/ncpv/images/efficiency_chart.jpg  

[21] MiaSolé. (2011 Oct.). MS Series -03 PV Module [Online]. Available: 
http://www.miasole.com/node/170  

[22]   Green Rhino Energy Ltd. (2013). Defining standard spectra for solar panels 
[Online] Available: http://www.greenrhinoenergy.com/solar/radiation/spectra.php  

[23] C. Honsberg and S. Bowden. (2014). PVCDROM [Online]. Available: 
http://www.pveducation.org/pvcdrom/  



 61

[24] R. A. Rohde. (2007 Jun. 09). Solar radiation spectrum [Online]. Available: 
http://www.globalwarmingart.com/wiki/File:Solar_Spectrum_png  

[25] A. S. Grove, “Elements of semiconductor physics,” in Physics and Technology of 
Semiconductor Devices, Palo Alto: John Wiley and Sons Inc., 1967, ch. 4, sec. 
4.1, pp. 91-95. 

[26] Sherif Michael, “EC3240 renewable energy at military bases and for the 
warfighter, 2013,” unpublished.  

[27] National Renewable Energy Laboratory. (2012 Apr. 25).  Silicon materials and 
devices R&D [Online]. Available: 
http://www.nrel.gov/pv/silicon_materials_devices.html  

[28] U.S. Department of Energy. (2013 Oct.). Photovoltaics research and development 
[Online]. Available: http://energy.gov/eere/sunshot/photovoltaics-research-and-
development 

[29] A. Kanevce, “Anticipated performance of Cu(In,Ga)Se2 solar cells in the thin-
film limit,” Ph.D. dissertation, Dept. of Physics, Colorado State Univ., Fort 
Collins, 2007. 

[30] National Renewable Energy Laboratory. (2011 Oct. 06). Polycrystalline thin-film 
materials and devices R&D [Online]. Available: 
http://www.nrel.gov/pv/thinfilm.html  

[31] C. Stevenson, “Utilizing maximum power point trackers in parallel to maximize 
the output of a solar (photovoltaic) array,” M.S. thesis, Dept. of ECE, Naval Post 
Graduate School, Monterey, CA, 2012. 

[32] Solar Cell Array Design Handbook, Vol.1., NASA Jet Propulsion Lab., Pasadena, 
CA, 1976, pp. 3.5-1. 

[33]  D. Ragonese and M. Ragusa. (2012, May). AN3392 application note – designing 
with the SPV 1020, and interleaved boost converter with MPPT algorithm. 
STMicroelectronics, Geneva, Switzerland. [Online]. Available: 
http://www.st.com/st-
webui/static/active/en/resource/technical/document/application_note/DM0002675
1.pdf  

[34] R. A. Cullen, (2009). What is maximum power point tracking (MPPT) and how 
does it work? [Online]. Available: 
http://www.blueskyenergyinc.com/uploads/pdf/BSE_What_is_MPPT.pdf  

[35] N. Mohan, T. Undeland and W. Robbins,“DC-DC switch mode converters,” in 
Power Electronics: Converters, Applications, and Design. 3rd ed. New Delhi, 
India: Wiley India, 2006, ch. 7, sec. 4, pp. 161-183. 



 62

[36] K. Adkins, private communication, Feb 2014. 

[37] Department of the Army. “Army Unmanned Aircraft System Operations,” DOD, 
Washington, DC, Field Manual Interim No. 3-04.155., 2006 [Online]. Available: 
http://www.fas.org/irp/doddir/army/fmi3-04-155.pdf 

[38] C. K. Chin, “Extending the endurance, missions, and capabilities of most UAVs 
using advanced flexible/ridged solar cells and new high power density batteries 
technology,” M.S. thesis, Dept. of ECE,  Naval Postgraduate School, Monterey, 
CA, 2011. 

[39] Raven B Small Unmanned Aerial System Intermediate Level Repairs Manual, 
DOD, Washington, DC, Reference Number 51582_D., 2008. 

[40] Office of the Under Secretary of Defense (Comptroller)/ Chief Financial Officer, 
“Program acquisition cost by weapon system,” DOD, Washington, DC, 2014 
[Online]. Available: 
http://comptroller.defense.gov/Portals/45/Documents/defbudget/fy2015/fy2015_
Weapons.pdf   

[41] V. Kapur, A. Bansal, and S. Roth, "Roadmap for manufacturing cost competitive 
CIGS modules," in Photovoltaic Specialists Conference (PVSC), 38th IEEE, 
2012, pp. 1–2. 

 



 63

INITIAL DISTRIBUTION LIST 

1. Defense Technical Information Center 
 Ft. Belvoir, Virginia 
 
2. Dudley Knox Library 
 Naval Postgraduate School 
 Monterey, California 
 
 


